recursive definition - definition. What is recursive definition
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

DEFINING THE ELEMENTS IN A SET IN TERMS OF OTHER ELEMENTS IN THE SET
Inductive definition; Recursively define; Recursively defined
  • Four stages in the construction of a [[Koch snowflake]]. As with many other [[fractal]]s, the stages are obtained via a recursive definition.

recursive definition         
Recursive definition         
In mathematics and computer science, a recursive definition, or inductive definition, is used to define the elements in a set in terms of other elements in the set (Aczel 1977:740ff). Some examples of recursively-definable objects include factorials, natural numbers, Fibonacci numbers, and the Cantor ternary set.
General recursive function         
ONE OF SEVERAL EQUIVALENT DEFINITIONS OF A COMPUTABLE FUNCTION
Partial recursive function; Total recursive function; Mu-recursive; Mu recursive function; Mu-recursive function; Recursive function theory; M-recursive function; Μ recursion; General-recursive; General recursive; Recursive function (computability); Μ-recursive function; Μ-recursive
In mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function (sometimes shortened to recursive function).

ويكيبيديا

Recursive definition

In mathematics and computer science, a recursive definition, or inductive definition, is used to define the elements in a set in terms of other elements in the set (Aczel 1977:740ff). Some examples of recursively-definable objects include factorials, natural numbers, Fibonacci numbers, and the Cantor ternary set.

A recursive definition of a function defines values of the function for some inputs in terms of the values of the same function for other (usually smaller) inputs. For example, the factorial function n! is defined by the rules

0 ! = 1. ( n + 1 ) ! = ( n + 1 ) n ! . {\displaystyle {\begin{aligned}&0!=1.\\&(n+1)!=(n+1)\cdot n!.\end{aligned}}}

This definition is valid for each natural number n, because the recursion eventually reaches the base case of 0. The definition may also be thought of as giving a procedure for computing the value of the function n!, starting from n = 0 and proceeding onwards with n = 1, 2, 3 etc.

The recursion theorem states that such a definition indeed defines a function that is unique. The proof uses mathematical induction.

An inductive definition of a set describes the elements in a set in terms of other elements in the set. For example, one definition of the set N {\displaystyle \mathbb {N} } of natural numbers is:

  1. 1 is in N . {\displaystyle \mathbb {N} .}
  2. If an element n is in N {\displaystyle \mathbb {N} } then n + 1 is in N . {\displaystyle \mathbb {N} .}
  3. N {\displaystyle \mathbb {N} } is the intersection of all sets satisfying (1) and (2).

There are many sets that satisfy (1) and (2) – for example, the set {1, 1.649, 2, 2.649, 3, 3.649, …} satisfies the definition. However, condition (3) specifies the set of natural numbers by removing the sets with extraneous members. Note that this definition assumes that N {\displaystyle \mathbb {N} } is contained in a larger set (such as the set of real numbers) — in which the operation + is defined.

Properties of recursively defined functions and sets can often be proved by an induction principle that follows the recursive definition. For example, the definition of the natural numbers presented here directly implies the principle of mathematical induction for natural numbers: if a property holds of the natural number 0 (or 1), and the property holds of n + 1 whenever it holds of n, then the property holds of all natural numbers (Aczel 1977:742).